Sunday, January 2, 2011

Physiological Principles

Human language is made possible by special adaptations of the human mind and body that occurred in the course of human evolution, and which are put to use by children in acquiring their mother tongue.

In the light of Darwinian evolution theory, most obviously, the shape of the human vocal tract seems to have been modified for the demands of speech. Our larynxes are low in our throats, and our vocal tracts have a sharp right angle bend that creates two independently-modifiable resonant cavities (the mouth and the pharynx or throat) that defines a large two-dimensional range of vowel sounds. Around 6-7 million years ago, the human vocal tract can be compared to the chimpanzees but this does not mean that humans evolved directly from chimpanzees, both derived from common ancestor. After the split off from the lineage, language evolved in the human for two reasons: our ancestors developed technology and knowledge of the local environment in their lifetimes, and were involved in extensive reciprocal cooperation. This leaves about 300,000 generations in which language could have evolved gradually.

The maturation of language circuits during a child's early years may be a driving force underlying the course of language acquisition.

Before birth, virtually all the neurons (nerve cells) are formed, and they migrate into their proper locations in the brain. But head size, brain weight, and thickness of the cerebral cortex (gray matter), where the synapses (junctions) subserving mental computation take place, continue to increase rapidly in the year after birth. Long-distance connections (white matter) are not complete until nine months, and they continue to grow their speed-inducing myelin insulation throughout childhood. Synapses continue to develop, peaking in number between nine months and two years (depending on the brain region), at which point the child has 50% more synapses than the adult. Metabolic activity in the brain reaches adult levels by nine to ten months, and soon exceeds it, peaking around the age of four. In addition, huge numbers of neurons die in utero, and the dying continues during the first two years before leveling off at age seven. Synapses wither from the age of two through the rest of childhood and into adolescence, when the brain's metabolic rate falls back to adult levels. Perhaps linguistic milestones like babbling, first words, and grammar require minimum levels of brain size, long-distance connections, or extra synapses, particularly in the language centers of the brain.

Similarly, one can conjecture that these changes are responsible for the decline in the ability to learn a language over the lifespan. The language learning circuitry of the brain is more plastic in childhood; children learn or recover language when the left hemisphere of the brain is damaged or even surgically removed (though not quite at normal levels), but comparable damage in an adult usually leads to permanent aphasia (Curtiss, 1989; Lenneberg, 1967). Most adults never master a foreign language, especially the phonology, giving rise to what we call a "foreign accent." Their development often fossilizes into permanent error patterns that no teaching or correction can undo. There are great individual differences, which depend on effort, attitudes, amount of exposure, quality of teaching, and plain talent.